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Abstract: Quick and accurate diagnosis helps shorten intraoperative waiting time and make
a correct plan for the brain tumor resection. The common cryostat section method costs more
than 10 minutes and the diagnostic accuracy depends on the sliced and frozen process and the
experience of the pathologist. We propose the use of molecular fragment spectra (MFS) in
laser-induced breakdown spectroscopy (LIBS) to identify different brain tumors. Formation
mechanisms of MFS detected from brain tumors could be generalized into 3 categories, for
instance, combination, reorganization and break. Four kinds of brain tumors (glioma, meningioma,
hemangiopericytoma, and craniopharyngioma) from different patients were used as investigated
samples. The spiking neural network (SNN) classifier was proposed to combine with the MFS
(MFS-SNN) for the identification of brain tumors. SNN performed better than conventional
machine learning methods for the analysis of similar and limited MFS information. With the
ratio data type, the identification accuracy achieved 88.62% in 2 seconds.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

According to statistics, there were more than 18 million new cancer cases and 9.6 million
cancer deaths worldwide in 2018 [1]. For most kinds of cancers, removing the tumor by
surgery is the most effective treatment method. During the surgery, intraoperative pathological
diagnosis will directly affect the next surgical plan. Especially for neurosurgery, accurate and fast
pathological diagnosis of the brain tumor plays an important role. The intraoperative environment
is significantly different from the intracranial environment during preoperative imaging detection,
for instance, Magnetic Resonance Imaging (MRI) [2]. Therefore, tumor types and boundaries
need to be determined intraoperatively. Meanwhile, due to the particularity of the disease site,
clinical doctors cannot perform a biopsy diagnosis before surgery. The timeliness and accuracy
of intraoperative tumor classification will directly affect the progress of the subsequent surgery.
The intraoperative pathological diagnosis includes discrimination of benign and malignant tissues
and discrimination of tumor types [3].
As a common intraoperative biopsy method, cryostat section method has been used for

discrimination of tumor types and boundary tissues clinically [4]. Compared with paraffin
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sections, the diagnosis based on cryostat section is faster and used as intraoperative standard.
However, at present, it still takes 10 minutes to 15 minutes from material collection to section
sealing for the leading frozen technology, and the diagnostic accuracy is not high enough [5].
According to the experience of clinical doctors, the cryostat section diagnostic accuracy is around
70% to 80%, which is influenced by the pathologist’s experience. Therefore, a rapidly and
accurately diagnostic technique needs to be developed for intraoperative detection.

Within the last decade, several histopathological diagnosis techniques based on tumormolecular
biomarkers have been developed. For instance, Wright et al. found that 29 small molecule
metabolites and 8 macromolecule signals detected by high-resolution magic angle spinning
(HRMAS) NMR spectroscopy can be used as biomarkers for brain tumor classification [6].
Denkert et al. pointed to GC-TOF-based metabolomics as a new method for molecular pathology
investigations [7]. Meanwhile, CircRNAs have been recognized as novel diagnostic and prognostic
targets in tumors, especially in glioma [8]. Some autoantibodies have also been proved that they
have potential application for cancer diagnosis [9]. However, previous works failed to address
the speed of diagnosis. Many macromolecular differences in tumors can be used as molecular
markers to diagnose tumors [10,11], but they are more suitable for postoperative research on
pathogenesis. Intraoperative molecular diagnosis based on mentioned techniques requires a long
time.

Focused on this problem, several quick detection methods have been proposed to diagnose the
tissue classifications and characteristics during surgery, for instance, mass spectrometry [12,13],
infrared spectroscopy [14], fluorescence [15] and Raman spectroscopy [16,17]. Eberlin et al.
classified three kinds of brain tumors by desorption electrospray ionization-mass spectrometry
(DESI-MS) imaging and 79% of tested features were consistent with the expert histopathology
diagnosis [13]. The mass spectrometry equipment is expensive and complicated to maintain.
During the detection, it often needs a partial vacuum environment. With recognized important
spectral wavenumbers, Uckermann et al. achieved a high correct classification rate (CCR) at
88% through the Fourier-transform infrared spectroscopy [14]. However, infrared spectroscopy
is not sensitive to water content in brain tissue, which is an obvious sign in some tumor tissues
[18]. Desroches et al. used Raman spectroscopy to diagnose different kinds of brain tumors,
but the sensitivity was only 80% [16]. Furthermore, only dense tumor tissue with more than
60% cancer cells can be diagnosed. In order to improve the accuracy, surface-enhanced Raman
spectroscopy (SERS) was applied in cancer diagnosis [17]. The diagnostic accuracies of all
developed techniques are still not high enough. The use of fluorescence or SERS technique
requires to inject reagents, for example, the nanoparticles (NPs) reagents [15,17]. Residual
reagents in the body may have influence on the nerve function, which makes the techniques cases
with defects as intraoperative diagnostic methods. In general, current diagnostic techniques have
not been able to diagnose various brain tumors quickly and accurately during surgery.
Previous works have been limited to identify macromolecules through biological or spectral

methods. Few researchers have addressed the significance of molecular fragments in diagnosis
of brain tumor. In this paper, we propose to use the molecular fragment spectra (MFS) in the
laser-induced breakdown spectroscopy (LIBS) to distinguish different brain tumors. As a novel
emission spectral technique, LIBS has been used for biological and medical detection field during
the last decade [19,20]. The laser pulse is focused on biological tissue and interacted with the
tissue material. Then, the trace amount of tissue is ablated and induced to generate plasma.
During plasma cooling process, both atomic spectra (AS) and MFS can be collected. LIBS has
played an important role in the diagnosis of different microorganisms and different types of
tissues [21,22]. In the preliminary work of our group, we have demonstrated that LIBS can be
used to distinguish gliomas from infiltrating border tissues [23]. However, the MFS in LIBS is
still not widely understood and applied in biological samples. The full spectra or AS are most
widely used signals in LIBS analysis. When detecting biological tissues, trace metal elements are
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easily affected by intraoperative hemorrhage and other effects, which brings elements in blood or
body fluids to the sample. Meanwhile, non-metal elements such as C, H, O, and N are susceptible
to be interfered by elements in the air. Therefore, the proposed MFS may highlight the changes of
different tissues under the ablation of laser pluses. Tissues of 12 patients from four kinds of brain
tumors (glioma, meningioma, hemangiopericytoma, and craniopharyngioma) were used in this
research. Four types of tumors were identified as infiltrative tumors and non-infiltrative tumors.
Compared with traditional machine learning data analysis methods, we introduced spiking neural
network (SNN) in MFS data analysis. All calculations were conducted on a computer with an
Intel Core i7-7700HQ CPU, windows 10 system and 16GB RAM. The SNN model was built on
MATLAB 2016a.

2. Materials and methods

2.1. LIBS setup

The schematic of the experimental LIBS setup for brain samples measurement is illustrated
in Fig. 1. There are already developed hand-held LIBS systems in other fields, which can be
modified to meet the needs of intraoperative applications. As a pioneering theoretical verification
study, we developed a desktop LIBS system to measure removal tissue. A He-Ne laser (λ= 632.8
nm) was used as pointing laser to indicate the optical path. Its red spot can indicate the position
of the point to be measured, which makes it easy to tune the optical path. A flash-pumped
Q-switched Nd: YAG laser (λ= 1064 nm, pulse frequency 1 Hz, pulse duration τ = 5 ns, beam
diameter Ø 6 mm, energy 40 mJ/pulse) was used to excite the sample’s surface. The laser
propagation direction was changed through three plane mirrors and finally focused on the sample
surface by a convex lens with a focal length of 100 mm. The plasma radiation was collected into
the fiber (Ø 600 µm) through a convex lens with a focal length of 36 mm. The outlet of optical
fiber was connected to a two-channel spectrometer (AvaSpec 2048-2-USB2, Avantes). Spectral
data collected by the spectrometer covers a range of 190 nm to 1100 nm with a resolution of
0.2∼0.3 nm. External trigger used in the system included a photodetector and a digital delayer
(SRS-DG535, Stanford Research System). When the photodetector detected the plasma radiation
signal, the spectrometer was triggered by DG535 after a preset delay time. This preset spectral
acquisition delay time was optimized to 1.29 µs to achieve the highest signal intensities. During
the optimization of the delay time from the laser pulses disappeared to 1.40 µs, the molecular
bands always present. The intensity of molecular band first raised and then felled with a highest
intensity at 1.29 µs. The integration time of CCD was 2 ms. A three-dimensional motorized
stage was used to adjust the focus position of the laser on the samples. Each shot was focused on
a fresh position.

Fig. 1. Schematic of the LIBS setup.
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2.2. Sample collection

Human brain tumor tissues were obtained from department of pathology after routine tumor
surgery. The patients gave written consent; the study was approved by the ethics committee at
the Kunming Sanbo Brain Hospital (Kunming, China, April 2020).
Samples were collected from 12 brain tumor patients, including 4 glioma, 3 meningioma, 3

hemangiopericytoma, and 2 craniopharyngioma patients. Glioma, also known as neuroectodermal
tumor, is the most common intracranial tumor, accounting for 40% to 50% of all brain tumors.
Meanwhile, the glioma has the characteristic of infiltrating into the surrounding tissue, so
the tumor boundary is not clear. All other known brain tumors have not shown the similar
characteristic. Meningioma, hemangiopericytoma and craniopharyngioma are other three typical
brain tumor types. Meningiomas are evolved from arachnoid cells or tissues not covered
by meninges. Most of them are benign tumors, and a few have the possibility of malignant
transformation. Hemangiopericytomas are true vascular tumors in the skull, which mostly
occur in the cerebellum and are mostly malignant. Craniopharyngiomas are the most common
congenital malignant tumors in the skull, which are more common in children and less common
in adults. The tumor samples removed during the surgeries were sent to the pathology department
to make FFPE sample blocks. Half of each tumor sample was used for pathological examination
to determine the type of tumor, and the other half was prepared for LIBS detection. In this work,
four kinds of brain tumors were identified as two types: the infiltrative and non-infiltrative tumors.
Glioma has the characteristic of invasive growth, while this feature is not obvious in other brain
tumors. So, the other three kinds of tumors are identified as one type. In order to ensure that the
conclusions obtained are universal for other patients, we must guarantee the double-blindness
between model training data and verification data. For each kind of tumor, samples from one
patient were used to collect data for testing set. Samples from other patients were used to collect
data for training set. Due to the different size of each tumor, the number of spectra available for
each tumor was also different. After collecting the original spectra from each laser shot, each
spectrum was accumulated from 10 laser shots according to the infiltrative or non-infiltrative
type. The number of spectra obtained and the composition of data set are listed in Table 1. For
training set, 355 spectra were collected in total, and for testing set, 123 spectra were collected.

Table 1. The composition of data set and tumor spectra number

Data set Tumor types Patient index Laser shots Spectra numbers

Training

Glioma G1# 278
151Glioma G2# 309

Glioma G3# 923

Meningioma M1# 431

204
Meningioma M2# 351

Hemangiopericytoma H1# 458

Hemangiopericytoma H2# 358

Craniopharyngioma C1# 442

Testing

Glioma G4# 440 44

Meningioma M3# 284
79Hemangiopericytoma H3# 280

Craniopharyngioma C2# 226
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3. Results and discussion

3.1. Formation mechanism of molecular fragment spectra (MFS) in brain tumors

Laser pulses were focused on the formalin-fixed paraffin-embedded (FFPE) samples of four
kinds of brain tumors. Due to the laser ablation, trace amount of surface tissue was vaporized
to generate plasma. During the plasma cooling process, we detected the light radiation, which
was known as LIBS spectrum. The LIBS spectra of glioma, meningioma, hemangiopericytoma
and craniopharyngioma are shown in Fig. 2. There are around 40 obvious lines in the LIBS
spectra related to six molecular bands (three CN violet bands and three C2 swan bands) and
eight elements (four metal elements Ca, Mg, Na, K and four organic elements C, H, O, N). This
indicated that all eight elements are present in the brain tumor samples. Although we have proved
that metal elements like Ca and Mg could be used in the identification of glioma and infiltrative
boundary tissues [23], such elements used in the identification of different brain tumors are still
not perfect. As organic samples, the content of metal elements in biological tissues was very
low. Meanwhile, the sample morphology of tissue was different from the conventional metal
sample. Due to the lower hardness, which caused certain difficulties for laser excitation, some
trace elements like Mg were not easy to detect in the spectra. Blood and body fluids brought by
the intraoperative bleeding and other reasons might affect the content of trace metal elements like
Na and K on the surface of the tumor. Therefore, although the intensities of Na and K showed
significant differences in tumor samples, they were still not suitable to be used as diagnostic basis.
The change of trace metal elements is usually a sign of tumor and healthy tissue [24], but the
change of trace metal element contents between similar tumors still needs further study.

Fig. 2. The LIBS spectra of four kinds of brain tumors.

Some organic elements like C, H, O and N also took a main part in the spectra, especially the H,
O and N. Compared with them, the C line at 274.8 nm was not obvious. These organic elements
were not only the main component of biological tissues, but also the main part of environment air.
All the experiments were done under standard atmospheric pressure in a conventional lab room,
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which was similar to the pathological testing environment. However, the main components in the
air like N2, O2, H2O and CO2 could be also excited by the laser pulse. This would introduce
interference in the LIBS spectra. The content of CO2 is only 0.03% in the air, which makes C in
the surrounding air contribute less to the spectra, while the intensity of the C line was lower than
that of other organic element lines in the spectra. This may indicate that most of these element
lines are contributed by air excitation.
In the LIBS spectra, element information is usually more abundant than molecular fragment

information. Therefore, the LIBS spectrum is often used for the analysis of element content and
difference in samples. Based on the above analysis, there should be some differences for brain
tissue samples. The molecular fragments were particularly important in the identification of
brain tumors based on LIBS spectra. Although the CN molecular fragments might have some
elements such as N from the air environment, they were also produced by interacting with the
elements in the sample under laser excitation. Therefore, MFS in the LIBS spectra reflected
both the characteristics of the sample and the interaction process between the laser pulse and
the brain tissue better. Although element lines like Na and K will have some influence on the
plasma parameters and cause influence on the line intensities and profiles, the analyzed molecular
bands profiles have less interference from this due to the widely different wavelength ranges.
We normalized the spectra with the sum intensity of whole range during analysis to reduce the
intensity bias. According to the reported review about LIBS in biomedical applications, the
molecular bands are reliable marker, even though they don’t represent the original proportion of
C and N bonds exactly [25].
Six molecular bands can be recognized in Fig. 2, including violet bands CN (1,0), CN (0,0),

CN (0,1) and Swan bands C2 (1,0), C2 (0,0), C2 (0,1). Different from atomic lines, each band
contains several peaks in its range. The detail information of these molecular bands is illustrated
in Table 2.

Table 2. The MFS bands types and containing peaks

Types MFS band Central wavelength (nm) Containing peaks (nm)

Violet CN
(1,0) 358 358.4

(0,0) 384 384.6, 385.7, 386.5, 388.0

(0,1) 417 414.8, 416.5, 417.6, 419.3

Swan C2

(1,0) 470 467.3, 469.3, 470.9, 473.2

(0,0) 516 509.2, 512.4, 516.0

(0,1) 558 549.6, 553.4, 557.9, 562.8

According to the interaction between laser pulses and brain tumor tissues, the main formation
mechanisms of MFS could be generalized into three categories, for instance, combination,
reorganization and break. The detection process and formation mechanisms of MFS are
illustrated in Fig. 3. The details of the experiments have been described in the Section 2. When
the incident laser was focused on the tissue surface, the high-energy coupling into the sample in
a short time would break the molecular bonds in the tissue. The formed plasma contained a lot of
atoms, ions and molecular fragments. As Eq. (1) and (2) demonstrated, free atoms and ions will
recombine to form molecular fragments. Biological tissue contains a large amount of C, which
will generate a large amount of C atoms and C ions under high-energy laser excitation. Brain
tumor tissue also contains a certain amount of N, but due to environmental factors, the main part
of N atoms and ions may come from the excitation of N2 in the air. The recombination of carbon
atoms and ions forms the C2 fragments, while the recombination of C and N atoms and ions
forms the CN fragments. During the formation process of molecular fragments, light emission
could be collected as MFS signals.

C + C→ C2 (1)
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C + N → CN (2)

Fig. 3. The detection process and the formation of MFS.

If the laser pulses were not energetic to atomize all the chemical bonds of the ablated materials
in the plasma, those molecular fragments that originate directly from the sample preserve their
chemical-bond arrangements as in the solid sample [26]. In the plasma, these molecular fragments
will generate secondary chemical bond breaks and reorganization, or they will recombine with
atoms and ions, and then form new molecular fragments. Meanwhile, newly formed chemical
bonds may also break again and recombine with other molecular fragments, atoms or ions. As
demonstrated in Fig. 3, these two kinds of formation mechanisms of MFS can be recognized
as reorganization, which represents the process of generating new molecular fragments from
old molecular fragments. Exhaustively, the specific situations covered by this mechanism were
shown in Eq. (3) to Eq. (8). Among them, the CN and C2 fragments may be caused by the
incomplete breakage of the original molecular bonds, or they may be generated by the first
mechanism mentioned above. Most of the N2 comes from the environment air around the plasma,
but there may also be cases where the N-N bond in biological proteins is not broken sufficiently.
As shown in Eq. (6), CH is a special case with element other than C and N. CH is the most
common chemical bond in organic molecules, and it is also the chemical bond that is most likely
to break incompletely under laser pulses ablation. The remaining CH will recombine with C to
produce C2.

C + N2 → CN + N (3)

2C + N2 → 2CN (4)

CN + C→ C2 + N (5)

C + CH → C2 + H (6)

C2 + 2N → 2CN (7)

C2 + N2 → 2CN (8)

Macromolecule→ CN + C2 (9)

The last formation mechanism of MFS is break. About this process, we have mentioned above
when discussing the other two mechanisms. Biological tissue contains many different large
molecules, including deoxyribonucleic acid (DNA), ribonucleic acid (RNA), protein, fat, et al.
These molecules make up cells, and cells make up tissues. Under the action of the laser pulse
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ablation, the less stable chemical bonds are broken, but there may be other residual chemical
bonds. Due to incomplete chemical bond breaks, CN and C2 may be directly generated from
macromolecules, as illustrated in Eq. (9). As mentioned, during the optimization of the delay
time from the laser pulses disappeared to 1.40 µs, the molecular bands always present. Therefore,
we assume that the mentioned cases all contribute to the intensities of the molecular bands.
However, the degree of influence of each mechanism is different.

3.2. Data distribution and similarity judgment

For samples with obvious MFS differences, they can be directly distinguished by observation.
Otherwise, the spectral data needs to be analyzed by intelligent data processing methods or
statistical methods. As shown in Fig. 2, the MFS of these four kinds of brain tumors were too
similar to identify by observation. Therefore, we calculated the sum intensity of each MFS band
as spectral data and analyzed the data distribution and similarity first by principle component
analysis (PCA). The original spectral data had multiple dimensions, and each dimension contained
different amounts of information. It was difficult to characterize the information of the entire data
by selecting several dimensions for analysis. As a commonly used dimensional reduction method
for data in the field of spectral analysis, PCA can compress the variance information contained in
the data into the first few dimensions by projecting the data into a less dimensional subspace
through linear transformation. The variance of each principal component (PC) represents the
proportion of original information they retain. Accumulating the variance of the first three
PCs, the represented information accounted for more than 99% in this work. The score of each
spectral sample on these three PCs can be used for clustering. The four kinds of brain tumor were
distinguished as two types: infiltrative tumor (glioma) and non-infiltrative tumors (meningioma,
hemangiopericytoma, and craniopharyngioma).
As Fig. 4(a) demonstrates, the two types of brain tumor could not be clustered into two

categories. In order to analyze the data distribution and similarity further, different from the band
data type, two new data forms have been developed, the peak data type and the ratio data type.
The band and peak numbers are mentioned in Table 2. For the band data type, there are 6 bands
and the bands intensities are used as inputs in the model. The band intensity is the sum of all
peak intensities in this band. For the peak data type, there are 20 peaks in total and the peak
intensities are used as inputs in the model. For the ratio data type, the ratios of band intensities
are used as inputs in the model. Every two different bands can make a ratio and there are 15
ratios in total due to the mentioned 6 bands. The PCA clustering results of the peak data type
and ratio data type MFS spectra were shown in Fig. 4(b) and 4(c).

It can be seen from the comparison of clustering results of the three data types that no matter
what data type was adopted, the similarity of spectral data was relatively high. This situation
is due to the similarity of the spectral band intensity itself, which was also consistent with
the relatively similar characteristics among these tumors. However, this situation raised the
requirements for the classification method in the identification process.

3.3. Quick identification by MFS combined with machine learning and brain-like com-
puting methods

For accurate brain tumor identification based on MFS, 355 spectral samples (including 151
infiltrative tumor samples and 204 non-infiltrative tumor samples) were used to build the
identification model, and 123 spectral samples (including 44 infiltrative tumor samples and
79 non-infiltrative tumor samples) from other patients were used to test the model. All three
data types were used as input of the model and their identification results are demonstrated in
Fig. 5, respectively. In recent years, machine learning algorithms and brain-like computing
methods have been widely used in data processing. According to our experience in the spectral
identification field [21,23], two conventional machine learning classifiers and the novel Spiking
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Fig. 4. The PCA cluster results of infiltrative and non-infiltrative tumors. (a: the band data
type; b: the peak data type; c: the ratio data type)



Research Article Vol. 11, No. 8 / 1 August 2020 / Biomedical Optics Express 4285

Neural Network (SNN) classifier were used to identify the different types of MFS data. The
artificial neural network (ANN) was also used as a verification comparison of SNN to analyze
the data. K-nearest neighbor (k-NN) is the most representative classification model that does not
require training the model, and predicts based on the training set data. Support vector machine
(SVM) is a very representative small sample training model, which works for both linear and
nonlinear problems.

Fig. 5. The identification results of three data types by k-NN, SVM, SNN and ANN.
(Predicted label 1: infiltrative tumor; predicted label 2: non-infiltrative tumor)

K-NN algorithm is a direct classification method to judge data categories based on distance.
Distances of all sample points in multi-dimensional space were calculated. The category of each
unknown data point is determined by the majority category of its nearest k known data points. In
this work, the optimized k was set to 3. As shown in Fig. 6, the highest identification accuracy
of k-NN classifier was 66.67%, which was related to the ratio data type. Such an identification
accuracy rate could not provide effective help for intraoperative pathological diagnosis. SVM
uses hyperplanes to split data category in multi-dimensional space. SVM can classify and
identify both linearly separable and inseparable data. There is usually more than one hyperplane
that can divide data categories in a multidimensional space. Selecting two parallel hyperplanes
between the two categories of spectral data, linear separable SVMmaximizes the interval between
two hyperplanes to determine the maximum-margin hyperplane, which lies halfway between
them. When the data is not linearly separable, a kernel function can be used to process the
data and map the data to a high-dimensional space. Indivisible data in low-dimensional space
will be separable in high-dimensional space, and then they can be distinguished according to
the above steps. The punishment parameter c and the kernel parameter g were optimized by
particle swarm optimization (PSO) algorithm. The corresponding SVM parameters are listed in
Table 3. No matter what data format was used, the identification accuracy of SVM was not high
enough, as shown in Fig. 6. Traditional machine learning methods had certain limitations in
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MFS data processing. The results of ANN model achieved a higher accuracy than k-NN and
SVM. According to this, we suppose that the neural network models are more suitable for this
identification problem than the traditional chemometrics. Furthermore, we propose to introduce
the SNN classifier for identification of infiltrative and non-infiltrative brain tumors.

Fig. 6. The identification accuracy of infiltrative and non-infiltrative brain tumors.

Table 3. The corresponding parameters of the SVM classifiers

Data type Punishment parameter (c) (nm) Kernel function Kernel parameter (g)

Band 1.5000 Gaussian 91.8292

Peak 100 Gaussian 7.8231

Ratio 0.7364 Gaussian 79.1539

As a third-generation neural network model, SNN achieves a higher level of biological neural
simulation and is closer to the calculation process of the human brain [27]. During the data
analysis, the human brain often shows much more powerful than conventional statistical methods.
Therefore, ANN has been used as a powerful processing tool in LIBS field [28]. ANN is a widely
parallel interconnected network composed of simple units with adaptability, and its organization
can simulate the interactive reaction of biological nervous system to real-world objects. However,
it takes a lot of time and computing power to build connections between dense neurons in the
network. SNN may provide an efficient method of reasoning because the neurons in the network
are sparsely activated. The most basic principle of conversion from ANN to SNN is that the
firing frequency of pulse neurons should match the simulated activation value in ANN [29,30].
The built SNN model had only one hidden layer, same as the built ANN model, and the number
of nodes contained in hidden layer was 40. The spiking neuron was training through the cuckoo
search (CS) algorithm, which is a heuristic training method based on the cuckoo’s parasitic
brood behavior [31]. As illustrated in Fig. 5, compared with k-NN, SVM and ANN, the SNN
classifier obviously performs better, especially with the ratio data type. Compared with ANN,
the proposed SNN occupied CPU power by half. From the Fig. 6, we could see that the highest
identification accuracy of infiltrative and non-infiltrative brain tumor achieved 88.62%. Such an
accuracy has reached a higher level in the current study, and can provide auxiliary guidance for
clinical oncology diagnosis. All three kinds of classifiers could finish the analysis process in 1
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s, which could meet the needs of rapid intraoperative diagnosis combined with the rapid LIBS
measurement in 1 s. The proposed LIBS method doesn’t need the complex sample preparation.
During the surgery, the doctor only needs to cut the tumor off and put it on the sample stage
before the detection. For all methods, this is an indispensable step, so we didn’t count the time of
this step for both our method and other methods.

As demonstrated in Fig. 6, the performance of the three data types under different identification
algorithms expressed the same trend. The ratio data type had better adaptability for classification.
By calculating the ratio between each two bands, the number of data features was expanded, and
the MFS difference between infiltrative and non-infiltrative tumors was amplified. Since some
peaks were from the same band, calculating each peak separately might ignore the relationship
among them. Although calculating each peak separately could also increase the number of data
features, its identification accuracy did not improve due to the lack of the correlation among the
features. Meanwhile, the intensity of a single peak was susceptible to be interfered. The ratio
data type could eliminate this interference to a certain extent, which could also explain why the
peak data was the worst and the ratio was the best.
Traditional machine learning methods k-NN and SVM have similarly low-level recognition

performances. The SNNmodel showed the best recognition ability. We explored the identification
accuracies of the training set and the testing set further, and the results are listed in Table 4.
Although the accuracies of testing set based on k-NN and SVM were only around 60%, the
accuracies of training set were really high. Especially for SVM classifier with the input of peak
data type, the accuracy of training data set achieved 97.46%. For these two classifiers, there were
clear phenomena of overfitting. For SNN classifier, there was no such situation. In contrast, the
identification results of the training set data were consistent with the testing set data, no matter
which kind of data type was used as input.

Table 4. The identification accuracies of training and testing data set

Data type
k-NN accuracy (%) SVM accuracy (%) SNN accuracy (%)

Training set Testing set Training set Testing set Training set Testing set

Band 90.42 61.79 90.70 60.98 78.31 78.05

Peak 89.86 57.72 97.46 58.54 82.54 82.93

Ratio 90.99 66.67 89.01 62.60 81.41 88.62

Traditional machine learning methods were prone to overfitting in the identification and
analysis of MFS data, and the proposed SNN could effectively improve this problem.

4. Conclusions

This study is the first step towards introducing the MFS of LIBS technique in the clinically
intraoperative identification of brain tumor. TheMFS of LIBS was used alone in biomedical tissue
identification for the first time. We conducted an in-depth analysis of the formation mechanisms of
MFS in brain tissue, including three kinds of formation mechanisms: combination, reorganization
and break. Combined with the proposed SNN brain-like computing method, the identification
accuracy achieved 88.62% in 1 to 2 seconds. Three kinds of MFS data types were proposed in this
work, and the ratio data type was proven to be the most suitable data type for identification, which
was the least susceptible signal type to be interfered and could reflect sample characteristics more
plentifully. The conventional machine learning methods k-NN and SVM performed not well
due to the significant overfitting. As a third-generation neural network, SNN could solve this
problem well.
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The results show that MFS-SNN is a potentially important technique for clinical brain tumor
identification. On this basis, we will further conduct fresh tissue detection and research to
promote the application of this technology.
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